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Abstract. We consider the DENSE-n/2-SUBGRAPH problem, i.e., determine a block of half
number nodes from a weighted graph such that the sum of the edge weights, within the subgraph
induced by the block, is maximized. We prove that a strengthened semidefinite relaxation with a
mixed rounding technique yields a 0.586 approximations of the problem. The previous best-known
results for approximating this problem are 0.25 using a simple coin-toss randomization, 0.48 using
a semidefinite relaxation, 0.5 using a linear programming relaxation or another semidefinite
relaxation. In fact, an un-strengthened SDP relaxation provably yields no more than 0.5
approximation. We also consider the complement of the graph MIN-BISECTION problem, i.e.,
partitioning the nodes into two blocks of equal cardinality so as to maximize the weights of
non-crossing edges. We present a 0.602 approximation of the complement of MIN-BISECTION.

Key words: Min-bisection; Dense-k-subgraph; Polynomial approximation algorithm; Semidefinite
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1. Introduction

Given an undirected graph G = (V, E) and non-negative weights w;; =w,, on the
edges (i, j) € E, the b-balanced min-cut problem is that of finding a subset of nodes
or vertices SCV to minimize

1
2 e o™
(i,j)EE,i€S jeV\S
such that bn<|S|< (1 —b)n, where n= V| and b<1. The special case in which
b =1 is sometimes referred to as the graph MIN-BISECTION problem (Shmoys,
1996). The problem can be formulated as follows:

1
W, := Minimize 521 w;; (1 —%%;)

(GBP) subjectto >, x, =0 or e'x=0
o=

n
j=1
2
X

=1j=1...,n,

where e€R" is the column vector of all ones, superscript T is the transpose
operator.
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(GBP) is a fundamental problem in the area of combinatorial optimization. It
arises from many network applications such as circuit partitioning (Choi and Ye,
1999). In particular, it is used as a subroutine in designing approximation algorithms
for a class of combinatorial optimization problems, via a divide-and-conquer
approach; see Leighton and Rao (1999) and Shmoys (1996).

Leighton and Rao (1988) showed that there exists a polynomial algorithm for
finding a b-balanced cut with b =1 of value O(log n) - w,, where w is the minimal
value of the (GBP). Even et al. (1997) get the similar result by using an alternative
approach. Note that these are not true approximation algorithms for (GBP)
(Williamson, 1998), since b=1. Very recently, in a major breakthrough, a
polylogarithmic approximation algorithm for (GBP) was obtained by Feige and
Krauthgamer (2000). For the planar graph, there exists a 2-approximation algorithm
due to Garg et al. (1994).

Many heuristic methods have been proposed in the literature. In a recent note,
Choi and Ye (1999) carried out some computational study of using a semidefinite
programming (SDP) relaxation to approximate the Circuit Bisection problem. They
essentially modeled the Circuit Bisection problem as a (GBP), and then used a SDP
relaxation based method to solve the problem. Their computational results showed
that the SDP approach worked better than other known heuristics, especially when
circuits are large.

The SDP relaxation has been successfully applied to various graph optimization
problems. Goemans and Williamson (1995) presented an 0.878-approximation
algorithm for the MAX-CUT problem. Feige and Goemans (1995) refined this
approach by adding additional constraints to the semidefinite program and gave an
improved 0.859-approximation algorithm for the MAX-DICUT problem. Frieze and
Jerrum (1997) obtained polynomial approximation algorithms for MAX-K-CUT and
MAX-BISECTION, and both of them have a better performance guarantee than
earlier results. Nesterov (1998), Zwick (1999), and Ye (1999b) extended the SDP
method to solving more general problems. Using more complicated rounding
techniques and analysis, Ye (1999a) made an improvement in the performance
guarantee from 0.651 of Frieze and Jerrum (1997) to 0.699 for MAX-BISECTION.
(See Mahajan and Ramesh (1999) for some de-randomization techniques for SDP.)

Using the same techniques, we now present a 0.602 approximation for the
complement of (GBP), that is,

1
w* 1= Minimize 52 w;; (1 +%%)

i<j

j

(CGBP) subjectto >, =0 or ex=0
=1

2
X;

1, j=1,...,n.

Note that for the same graph, the sum of w, and w* is the sum of the total edge
weights of the graph:
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W* + W, = 2 W .
i<j
A closely related problem to (CGBP) is the so-called DENSE-k-SUBGRAPH
problem (DSP), i.e., determine a subset SCV of k nodes such that the total weight
of the subgraph induced by S is maximized, see Srivastav and Wolf (1998). This
problem can be formulated as:
1

w* I= Minimize Z

> Wi (1+ % +X +%X)

i<j

(DSP) subjectto 2, x;=2k—n or e'x=2k—n

1

In this paper, we consider the case of k=n/2.

The previous best-known results for this problem are 0.25 using a simple
coin-toss randomization technique, 0.5 using a linear programming relaxation
(Goemans, 1996) or a SDP relaxation (Feige and Seltser, 1997), and 0.48 using a
different SDP relaxation (Srivastav and Wolf, 1998). In fact, Srivastav and Wolf
have proved that the SDP relaxation used in their analysis yields at most 0.5
approximation of DENSE-n/2-SUBGRAPH. Crossing the 0.5 barrier, we present in
this paper a 0.586 strengthened SDP-based approximation algorithm, following a
0.519 approximation algorithm, for the DENSE-n/2-SUBGRAPH problem.

After the announcement of our results, we have learnt of the 0.517-approximation
algorithm for DENSE-n/2-SUBGRAPH problem and 0.547-approximation algo-
rithm for the complement of (GBP), which were independently obtained by Feige
and Langberg (1999).

2. SDP relaxation and approximation of (CGBP)

Our semidefinite programming relaxation of (CGBP) is:

1
Wqp, = Minimize 52 w;; (1 + %)

(SDP) subjectto >, > X, =0 (or ee’ eX=0), (1)
i=1j=1
X
Here, e R" is the vector of all ones and the unknown X €R is a symmetric
matrix. Furthermore, e is the matrix inner product Q e X = trace(Q"X), and X >=Z
means that X — Z is positive semidefinite.
Obviously, (SDP) is a relaxation of (CGBP), since for any feasible solution x of
(CGBP), X =xx" is feasible for (SDP); so that we, =w*. Let X be an optimal
solution of (SDP).

1,j=1,...,n, X=0.

nxn
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The following approximation method is similar to the one in Frieze and Jerrum
(1997), Srivastav and Wolf (1998), and Ye (1999a), also see Nesterov (1998) and
Zwick (1999).

1. SDP solving: Solve (SDP) to obtain the semidefinite matrix X.
Repeat the following two steps for [e " log e '] times, where € >0 is a positive
small constant as stated in Frieze and Jerrum (1997), and output the best bisection.

2. Randomized rounding: Generate a vector u from a multivariate normal
distribution with 0 mean and the covariance matrix 6*X + (1 — 6*)I, where | is the
identity matrix, and 0 <#* =<1 will be specified later in the next section. That is,
generate

uEN(0, 8*X + (1 — 6*)1),
then assign

X = sign(u) ,
ie.,

. [ 1 ifu=0
$T1-1 ifu<o.

Select the block S ={i : %X, =1} or S ={i : X, = —1} such that [S|=n/2. Let S =S.

3. Node swapping: For each i €S, let {(i)==,csw; and S:={i,,i,, ..., i}
where {(i,) = {(i,) = - - - = {(i;5). Then, remove the node i from S and reassign
S:={iy, i, ...,i5_,}. Repeat this swapping process till S| =n/2. O

For any U CV, denote the total weights within the subgraph induced by U as w(U),
that is,

w(U):= > Wij

i<j,ieu, jeu
define
w(U,V\U) =wU) +wiV\U).

Then, the following lemma holds and is due to Srivastav and Wolf (1998):

LEMMA 1. The total weights of non-crossing edges

a2
WENVS) = grigT ) W V'S). )

Proof. The edge disappears in the swapping procedure if and only if one of its
endpoints is removed. It follows that
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> w(S\ih = (S| - 2w(§),

ies
since each edge is counted |§| — 2 times. Suppose v is the node that is removed in
the swapping procedure, then

2w, <> w, foranyotheries,

Thus,
w(S\oh) >|?§| > w(S\iy = ’SH 2 w(S).

By induction we get that the final S satisfies

n//n
- >§(§—1)
W= sfsT ) )
Therefore,
n n
5(5‘1)

w(S,V8) =w(S) +w(v\8) = i e )

n/n
>§(§—1>
= slisI= 1) -w(S, V\S) . U

-w(S) +w(V\S)

3. Analysis of the approximation of (CGBP)
In order to analyze the quality of bisection S, we define two random variables
similar to those in Frieze and Jerrum (1997) and Ye (1999a):
1 . 1 o n
w:i=w(S,V\S) = > .§<:, w;(1+XX) = 7 z’, wi; (1 +XX;)

and

m:=!s!(n—|s|)=n7—(e:) =%Z(1—f<.§<j)_

LEMMA 2. Our approximation method yields S satisfying the following two
inequalities.
Ewl=a -wyy=a-w*,
2

E[m] =8

where a = a(6%*), B:= B(6*), and
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1+ 2 e
p- arcsin(ay)

a(®)=_min T+y : (3)
2 .
2 _ 1- p arcsin(9)
BO)=1- p arcsin(@) — —
. 2 arcsin(@) — arcsin(6y)
omn, 1y - (4)

Proof. From Lemma 2.2 of Goemans and Williamson (1995), and Proposition 2 of
Bertsimas and Ye (1998), we have

o n 2 T - .
E[xixj]Z;arcsm(e Xi), Lj=12,...,n, i#]. (5)
Using the same argument in Ye (1999a) and by the definition of « from (3), we get

2 - _
1+ _arcsin(0*X;) = a(l +X;) .

Thus
1 2 . — 1 —
Efw] =7 2 wy( 1+ —arcsin(@*X,) ) =7 2 wy - a(1 +X,)
i~ T i~
= Wgp . (6)
Let
2 arcsin(@*) — arcsin(6*
i 2 arcsine®) ©*y)

—1lsy<1 T 1_y

and noting that

i#]

we derive

0 —E[e%)T= 3 (1+2 arcsin(e*X,) )

i#]

> g,l <1 - % arcsin(0*) + a’(1 — )?ij)>

=n*— n)<1 - % arcsin(@*)) +(n* —n)a’ +na’

2 2
1——arcsin(f*) + a’) n®— <1 -= arcsin(&*)) n
aa v

:( 2 1—%arcsin(0*)> L

JEE— 1 * I
1 77_arcsm(0 )+« n

n?.
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Thus, the second desired result in the lemma is obtained by the definition of m. [

Consider a new random variable

4
)= w tY ™
where
o 1
=2 (—-1). 8
=55 ©

By Lemma 2, we have
Elz(y)]=a+y8 and z(y)<l+vy.

Let * and R* be the optimizer and optimal value, respectively, to the following:

max R@):= ) 1 \I= @)

0=6=<1 B(@)Z

Then we have:

LEMMA 3. If the random variable z(y) fulfills its expectation, i.e., z(y) = a + 8,
then

w(S, V\S) 22—:? R* - w* .
Proof. Suppose
w(S,V\S) = aw* and |[S|=86n=n/2,
which from (7) and z(y) = a + y8 implies that
A=a+ 8 — 4y5(1—§) .
Applying (2), 1/2< 6 <1, and (8), we see that

n/n
w(S, V\S) >§(§7_1w(s V\S)
: ~enién—1)
n-2 1
1757 -W(S, V\S)
=%
n—-2 1
Bn—l'E'W(S’V\S)
n—-2 A
= . .W*
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>n—2.a+'yl8—4y5(1—8).w*

-1 48°
2

2n—2.a)/-i-(ﬁ—1)'y o

n—1 a+yB

n—-2 «a
=n—1'?(1—v1—,8)2-w*
_n_z_R*, *

“h-1 W™ .

The last inequality follows from simple calculus that, if we let

a+yB —4vy5(1—6)
48°

#(6) =

the only root for ¢'(6) =0 in (0, «) is

_at By
& = 2y
and
$"(8,) =8, >0. U

Now we are ready to give the first main result of this paper.

THEOREM 1. The worst case performance ratio of the approximation method for
the complement of MIN-BISECTION is at least 0.602 as n sufficiently large.

Proof. We verified that for 6 =0.78, «a(f)=0.7848 and B(#)=0.9800 for n
sufficiently large, therefore,

R =R(0) =) (1 _\/T= B@)? = 06024

BO)’
Thus, for n sufficiently large, we must have
n—2
n_l-R*>0.602.

Following the rest of proof of Frieze and Jerrum (1997), we have proved the
theorem. O

4. SDP relaxation and approximation of (DSP)
Our SDP relaxation of (DSP) is
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1
Wep = Maximize 7 2 wy(1+ Xo; + Xo5 + X;)

4 0<i<j
(DSDP) subjectto >, >, X; =0 (or (0;€)(0;€)" X =0), (9)
i=1j=1

X;=1,j=0,...,n, X>0.

Here, the unknown X € R™* <Y row and column indexed from 0 to n.
The rounding algorithm for (DSP) is similar to Srivastav and Wolf (1998):

1. SDP solving: Solve the problem (DSDP) to obtain a semidefinite matrix X.
Repeat the following two steps for [e *log e '] times, where e >0 is small
constant as stated in Frieze and Jerrum (1997), and output the best subgraph.

2. Randomized rounding: Generate a vector
uEN(, *X + (1 — 6%)1).

Then assign
X = sign(u) .

Select the block S ={i >0:% =%,}. Let $=S5.

3. Node swapping:

o If |S|>n/2, then for each i €S, let ¢(i)==,csw; and S:={i, i, ... 05}

where {(,)=¢(i,)=---={(i5) Then, remove node i‘s‘ from S and reassign
={i,, i, ...,ij5_,}. Repeat this swapping process till |S| =n/2.

. If |S| <n/2, arbitrarily add n/2 — |S| nodes from outside of S into S. O

The following lemma is the analogue of Lemma 1.

LEMMA 4. The total weights of edges in the subgraph induced by S

n n
i 5(5—1)
W(S) =1 [s|(s| - 1)
w(S) if [S|<n/2

w(s) if [S|>n/2 (10)

5. Analysis of the approximation of (DSP)

In order to analyze the quality of subgraph S, we again consider two random
variables:
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The rest analysis is parallel to that of CGBP with one exception: while 8(6), R(9),
etc. remain the same as before, a(f) needs to be re-defined.

For any given 0 <@ <1, let us generate a vector u € N(0, 6X + (1 — 8)l), assign
X = sign(u), and select the block S(@) = {i : X, = X,}. Then, we have

E[w(S(8))] = % 0<Z<. wij<1 + % (arcsin(6X,;) + arcsin(6X,;) + arcsin(oX;, )))

(11)

Before we continue our analysis, we present some technique lemmas:
LEMMA 5. For 0<6 <1 and 0=<x =<1, xarcsin(@) = arcsin(6x).

Proof. It is seen that the inequality held when x = 0. Now we prove for 0<x <1
that
arcsin(9) _ arcsin(6x)
6 - ox
Here we prove that the function g(x) = arcsin(x)/x is non-decreasing in (0, 1], and,
therefore, the above inequality held. Take the first derivative of g(x) we get

0/ = _arcsin(x) N 1
x* xV1—x?

Let

2 () — : X

h(x) = x“g’(x) = —arcsin(x) + Nk
Since h(0) =0 and

h'x) =x*(1—x*)"*?=0,
we get h(x) =0 for 0 <x < 1. Therefore, g'(x) =0 and then g(x) is non-decreasing
in (0, 1]. O
LEMMA 6. For 0 <@ <1, the minimizer of function

1+ 2 arcsin(9) + 4 arcsin(6x)

0=—""%35

in (—1, 1] will be obtained at x =0.
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Proof. It will be sufficient if we can prove f(x) <f(0) and f(—x)=f(0) for all
0=<x=1. Now, suppose x>0. By Lemma 5, we have

2 .
1+—arcsin(0) o, 2 arcsin(6x)
fz—arcsm(@)>—7!
T ™ X

Then it is easy to see

2 . 4 . 2 .
1+ —arcsin(d) + —arcsin(6x) 1+ —arcsin(f)
s s o

9 = 2+ 2x = 2 =),
and
2 , 4 . 2 .
1+ p arcsin(6) — p arcsin(éx) 1+ p arcsin(9)
f(—x) = > ox = > =1(0). O

REMARK. Using the same idea we can prove that Lemma 6 holds for

6 .
1+ —arcsin(6x)
s

fe) = 1+ 3x
and
2 .
1 + —arcsin(6x)
_ T
f(x) = 1+x
Denote by
a=>_(0i, b=>_(0j, and c=>_(ij.

Note that )_(Oi, )_(Oj and )_(ij are three off-diagonal components of a 3 X 3 positive
semidefinite matrix whose diagonal components are all ones. The following lemma
is a generalization of Lemma 6.3 in Goemans and Williamson (1995).

LEMMA 7. For any 0< 6 <1,
2
1+ p (arcsin(fa) + arcsin(fb) + arcsin(6c)) = a(#)(1 +a + b +¢)

for all

where

1+ Ll arcsin(dy)
(@)= min T

—1/3<y=1 1+3y (12)
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Proof. Consider the minimization problem of
s 2 . . .
Minimize 1+ p (arcsin(@a) + arcsin(6b) + arcsin(6c)) — a(#)(1 +a +b +c¢)
(13)

1 a b
subject to a l c|=>=0.
b c 1

We want to prove that O is its minimal value.
The constraints of the problem can be equivalently written as

a,b,ce[-1,1] and a*+b*+c*—2abc<1.

If one of a, b, c, say a, is —1, then we can verify that b + ¢ = 0, and the objective
value is

2 .
1——arcsin(6)=0.
v

If one of a, b, c, say a, is 1, then we can verify thatb —c =0. Ifb =c =0, by the
definition of a(#), we have

2 4
1+ —arcsin(@) + — arcsin(Ab)
v o

1 6 . 2 6 .
=3 (1 + P arcsm(@)) + 3 (1 + p arcsm(ab))

2%-a(@)-(l+3)+%-a(0)-(1+3b)
=a(f)-(2+2b). (14)

By Lemma 6, we can see (14) also holds when b < 0. Therefore, the objective value

2
1+ p (arcsin(@) + 2 arcsin(6b)) — a(#)(2 +2b)=0.
Now, we need only to prove that the objective value of (13) subject to the set
{(@ b,c):ab,ce(—1,1) and a® + b* + ¢* — 2abc < 1}

is equal to or greater than 0.
Actually, we prove that the objective value of (13) subject to a larger set

{@,b,c):a,b,ce(—-1,1)and a+b+c=—-3/2}

is equal to or greater than 0. Why is this set larger than the previous one? Consider
another minimization problem

Minimize a+b+c

1 ab
subject to a l c|=0.
b c 1

(15)
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This is a convex minimization problem and one can verify that its minimal value is
—3/2ata=b=c=—1/2. Thus,

1 a b
a 1l c|=0
b ¢ 1

implies that
atb+c=-3/2.
Finally consider the third minimization problem

2
Minimize 1+ g (arcsin(fa) + arcsin(6b) + arcsin(6c)) — a(#)(1 +a +b +¢)

subjectto a+b+c=-3/2 (16)
—1l<ab,c<l.

One can see all its KKT points satisfy

a’=b>=c?.
If a=b =c, we can see the lemma is true for a > —1 by the definition of «(6); the
lemma is true for —; <a=< —3 since the first part of the objective function is
nonnegative and the second part is nonpositive. Otherwise, suppose b = —c. If
a=0, the objective value is

1+ % arcsin(fa) — a(0)(1 + a) =% %(1 + % arcsin(fa) — a(0)(1 + a))

N

>§+%-a(0)'(l+3a) —a(@)(1+a)

=0.
This inequality also holds for a < 0 by the remarks we made following Lemma 6. [J
Now let «(f) be as in (12), B(6) be as in (4), and the random variable z(y) be as in

(7). Let 6* and R* be the optimizer and optimal value, respectively, to the
following:

max R(6):= a(0)

Sy (VI BE).

Furthermore, let « = a(6*), B = B(6*), Then, Lemma 2 holds for (DSP) and its
relaxation (DSDP); and Lemma 3 also holds for w(S), i.e.,

~ n—

- . * . *

W(S)Bn_l R*-w*,
where

R*= gz (—VI=p)".
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The proof of the latter for case 1/2<§6 <1 is identical to the proof of Lemma 3;
and the proof of case 0<6 <1/2 is from (10):
w(S) =w(S)
=(a+ yB —4y5(1 —98))-w*
_ a+yB —4y5(1—8) W
41— 8)°

=R*-w*,

The last inequality holds by switching 6 and 1 — & in the proof of the first case.
Now we have the second main result:

THEOREM 2. The worst case performance ratio of the algorithm for the DENSE-
n/2-SUBGRAPH is at least 0.519 for sufficiently large n.

Proof. For n sufficiently large, we verified that for 6 =0.84, «(6)=0.7079 and
B(0)=0.9719, therefore,

R*=R(f) = g((:))z (1—\/1— B(6))?=0.5193.

Following the rest of proof of Frieze and Jerrum (1997), we have proved the
theorem. O

6. Strengthened SDP relaxation of (DSP)
Our strengthened SDP relaxation of (DSP) is

- 1
Wgp -= Maximize ZO<Ei<j Wij(l + Xoi T xoj + xij)

subject to 2 Xy =0,
j=1

(DSDP) (17)

Here, the unknown X € R®*D**D row and column indexed from 0 to n. Note
that this SDP relaxation is a strengthened version of the SDPs used in Srivastav and
Wolf (1998), where there is no constraint 2{_, =", X;; =0; and used in (9), where
there is no constraint =_; X,; = 0. Let X be an optimal solution of the strengthened
SDP relaxation.
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In order to analyze the quality of bisection S resulted from the same rounding
procedure used earlier, we consider three random variables:
w:i=w(S) = 7 > Wi (1 + XoX; + XoX; +XX;)

o<i<j
1 " A
pi=n—|3 :E_zo(l—xoxj),
j>

and

n®> ('x)* 1 .
sl -lsh -2 - EL L > |

i>0, j>0

Let us recall and introduce more notations. For a given 0<6 <1, let «(f) be as in
(12) and B(#) be as in (4), and let #* and R* be the optimizer and optimal value,
respectively, to the following:

. a(0)(2n(0) — n(6)*)
oMaX, RO)=17720) — BO)1 + 2n(0))

where

o) - V(9 —58(0)(1 — B(6)) — (1 — B©))
o) = 22— B0) '

Then, let « = a(0*), B:= B(6*) and n =n(0*). Note that

(18)

Osa=1, 0s=B=<1, and O=9y=<1/2.
LEMMA 8. Our approximation method yields S satisfying the following three
inequalities.
Ewl=a -wyy=a-w*,
n
Elp]=8"7,

n2
E[m]=g3- I
Proof. The first and third inequalities are proved earlier. To prove the second
inequality, let
2 arcsin(@*) — arcsin(6*
i 2 aresin(@*) — arcsin(6*y)
—1=sy<1 T 1 -y

and noting that

E>_(0j=01

>0

we derive
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1 —
E[n—|[S[]]= 520 (1 - —arcsin(e*xoj)>
j>
_1 <1 — —arcsin(6*) +£arcsin(0*) — = arcsin(9*X .)>
2= T T o
1 _
=7 <1 ——arcsin(@*) + a’'(1 — Xoj)>
=0
2 . N
= 1—;arcsm(0*)+a )
n
=p X O

w
2 y)i=w F oyt Yo (19)

where 7 is given by (18) and

o
Y 14— pA+2n)

(20)
By Lemma 8, we have
Elz(n, y)]=a+2nyB+yB and z(n, y)<1+4ny +y(1—n)*.
Now we prove the last lemma:

LEMMA 9. If random variable z(n, v) fulfills its expectation, i.e., z(n, y) = a +
(2n + 1)yB, then

W(§)2:—:i-R*'W*,
where recall that
a(2n —n°)

R* =
1+4n—B(1+2n)"

Proof. Suppose
w(S)=Aw* and |[S|=6n,
which from (19) and z(7, y) = a + (21 + 1)yB implies that
A=a+ 2y +1D)yB —4ny(l—8) —4y5(1 — 9)
= a+ (2n+1)yB8 — 4dny + 48y(n — 1) + 48%y .

Consider the case 1/2=<6 <1. Applying Lemma 4, we see that
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W)= "5nen —1
n—-2 1
no=
B
n—-2 1
Zn_l-m W(S)
n—-2 A
— . W
n—1 g5z "
_n-2 a+(@n+1)yB — 4y +48y(n—1)+48°y
“n-1 452 W
_nN=2 (a+(+1)yB—dny y(n-1) x
_n_1.< 15° + 5 +y)-w
2 2
n—1 a+(2n+1)yB —4ny

The last inequality follows from simple calculus that
a+(@n+l)yB—4ny 1

2y(1—m) 2(1—m)
(the second equality above is from (20) that v = a + (29 + 1)yB — 4ny), yields the
minimal value for

at @ty —dny »n-1)

2 Y
45 o
in the interval (0, +).
Consider the case 0=<6 <1/2. Applying Lemma 4, we see that

6:

w(S) = w(S)
= (a+ (29 + 1)yB — 4y + 46y(n — 1) + 48°y) - w*
= (a + (29 +1)yB — 4ny — y(1 — 7)) -w*.

The last inequality follows from simple calculus that

yields the minimal value for
a+ (29 + 1)yB — dyy + 46y(n — 1) + 48°y

in the interval [0, 1/2].
Finally, our choice for y in (20) makes
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2 2
_ Yy (1-m) 3 o
Y T aF @ut DB —dny @ T @1+ 1)y8 4y =l -m) =R*,

which proves the lemma. O

Note that n given by (18) maximizes

a(2n—n°)
1+4n— B(1+2n)

for any given 08 <1 and a >0.
Finally, we have the third main result:

THEOREM 3. The worst case performance ratio of the approximation algorithm
for the DENSE-n/2-SUBGRAPH is at least 0.586 for sufficiently large n.

Proof. For sufficiently large n, we verified that for 6 =0.89, «(6)=0.7368 and
B(6) = 0.9621, therefore, n(6) = 0.1737 and

_ an—7?)
- 1+ 49— B(1+ 2n)

R* =(.5866 .

Following the rest of proof of Frieze and Jerrum (1997), we have the theorem
proved. O
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